Let a, b, c be real numbers satisfying a < b < c, a + b + c = 6 and ab + bc + ca = 9.
Prove that 0 < a < 1 < b < 3 < c < 4.
Prove that 0 < a < 1 < b < 3 < c < 4.
Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...
No comments:
Post a Comment