Thursday, 15 July 2021

Find the number of pairs \((m,n)\) of positive integers with \( 1 \le m < n \le 30\) such that there exists a real number \(x\) satisfying $$\sin(mx)+\sin(nx)=2.$$

No comments:

Post a Comment

Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...