Tuesday, 20 July 2021

For \(n \ge 1\) call a finite sequence \((a_1, a_2 \ldots a_n)\) of positive integers progressive if \(a_i < a_{i+1}\) and \(a_i\) divides \(a_{i+1}\) for all \(1 \le i \le n-1\). Find the number of progressive sequences such that the sum of the terms in the sequence is equal to \(360\).

No comments:

Post a Comment

Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...