Tuesday, 27 July 2021

Let P(x),Q(x) be monic polynomials with integer coeeficients. Let an=n!+n for all natural numbers n. Show that if P(an)Q(an) is an integer for all positive integer n then P(n)Q(n) is an integer for every integer n0.

No comments:

Post a Comment

Define f:RR by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \ 0, ...