Tuesday, 27 July 2021

Let \(P(x),Q(x)\) be monic polynomials with integer coeeficients. Let \(a_n=n!+n\) for all natural numbers \(n\). Show that if \(\frac{P(a_n)}{Q(a_n)}\) is an integer for all positive integer \(n\) then \(\frac{P(n)}{Q(n)}\) is an integer for every integer \(n\neq0\).

No comments:

Post a Comment

Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...