Friday, 20 August 2021
Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by
\[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}\]
Then,\(\qquad\)
(a) \(f\) is discontinuous.
\(\qquad\)
(b) \(f\) is continuous but not differentiable.
\(\qquad\) \(\qquad\) \(\qquad\)
(c) \(f\) is differentiable and its derivative is discontinuous.
\(\qquad\) \(\qquad\) \(\qquad\)\(\qquad\)\(\qquad\) \(\qquad\)
(d) \(f\) is differentiable and its derivative is continuous.
Subscribe to:
Post Comments (Atom)
Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...
-
In an idle moment, Vedansi Chakraborty picked up two numbers x and y such that 0<x<y<1. She wondered how to combine these simply...
-
To each element of the set S = {1, 2,............, 1000} a colour is assigned. Suppose that for any two elements m & n of S, if 15 di...
No comments:
Post a Comment