Sunday, 15 August 2021

Let f:RR be a continuous function such that f(x+1)=12f(x) xR, and let an=0nf(x)dx for all integers n1. Then limnan exists and equals 201f(x)dx.

No comments:

Post a Comment

Define f:RR by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \ 0, ...