Wednesday, 18 August 2021
Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be any twice differentiable function such that its second derivative is continuous and
  \[\frac{d f(x)}{d x} \neq 0 \text { for all } x \neq 0 \text { . }\]
If then prove that
  \[\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\pi\]
for all \(x \neq 0, \quad f(x)>f(0).\)
Subscribe to:
Post Comments (Atom)
Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...
- 
16 programers are playing in a single elimination tournament. Each player has a diff erent skill level and when two play against each othe...
- 
Post by mathematicalcircles .
- 
Find all polynomial \(P(x)\) with degree \(\leq n\) and non negative coefficients such that \[P(x)P(\frac{1}{x})\leq P(1)^2\]for all positiv...
 
 
No comments:
Post a Comment