Friday, 16 July 2021

Find the least positive integer \(n\) for which \(2^n + 5^n - n\) is a multiple of \(1000\).

No comments:

Post a Comment

Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...