Friday, 16 July 2021

Let f(n) and g(n) be functions satisfying f(n)={n if n is an integer1+f(n+1) otherwiseand g(n)={n if n is an integer2+g(n+2) otherwisefor positive integers n Find the least positive integer n such that f(n)g(n)=47.

No comments:

Post a Comment

Define f:RR by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \ 0, ...