Friday, 16 July 2021

For any finite set \(S\), let \(|S|\) denote the number of elements in \(S\). FInd the number of ordered pairs \((A,B)\) such that \(A\) and \(B\) are (not necessarily distinct) subsets of \(\{1,2,3,4,5\}\) that satisfy $$|A| \cdot |B| = |A \cap B| \cdot |A \cup B|$$

No comments:

Post a Comment

Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...