Friday, 16 July 2021

Let \(a, b, c,\) and \(d\) be real numbers that satisfy the system of equations \begin{align*} a+b&=-3\\ ab+bc+ca&= -4\\ abc+bcd+cda+dab&=14\\ abcd&=30. \end{align*}There exist relatively prime positive integers \(m\) and \(n\) such that $$a^2 + b^2 + c^2 + d^2 = \frac{m}{n}.$$Find \(m + n\).

No comments:

Post a Comment

Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...