Wednesday, 18 August 2021

Suppose f(x) is a twice differentiable function on [a,b] such that f(a)=0=f(b) and x2d2f(x)dx2+4xdf(x)dx+2f(x)>0 for all x(a,b) .  Then, (a) f is negative for all x(a,b). (b) f is positive for all x(a,b). (c) f(x)=0 for exactly one x(a,b). (d) f(x)=0 for atleast two x(a,b).

No comments:

Post a Comment

Define f:RR by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \ 0, ...