mathematicalcircles
To Live and Breathe Mathematics
Friday, 20 August 2021
Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by
\[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}\]
Then,\(\qquad\)
(a) \(f\) is discontinuous.
\(\qquad\)
(b) \(f\) is continuous but not differentiable.
\(\qquad\) \(\qquad\) \(\qquad\)
(c) \(f\) is differentiable and its derivative is discontinuous.
\(\qquad\) \(\qquad\) \(\qquad\)\(\qquad\)\(\qquad\) \(\qquad\)
(d) \(f\) is differentiable and its derivative is continuous.
Wednesday, 18 August 2021
Let
\[\begin{gathered} p(x)=x^{3}-3 x^{2}+2 x, x \in \mathbb{R}, \\ f_{0}(x)= \begin{cases}\int_{0}^{x} p(t) d t, & x \geq 0, \\ -\int_{x}^{0} p(t) d t, & x<0,\end{cases} \\ f_{1}(x)=e^{f_{0}(x)}, \quad f_{2}(x)=e^{f_{1}(x)}, \quad \ldots \quad, f_{n}(x)=e^{f_{n-1}(x)} \end{gathered}\]
How many roots does the equation \(\frac{d f_{n}(x)}{d x}=0\) have in the interval \((-\infty, \infty)?\)
Subscribe to:
Posts (Atom)
Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...
-
In an idle moment, Vedansi Chakraborty picked up two numbers x and y such that 0<x<y<1. She wondered how to combine these simply...
-
Let A & B be two fixed points on a fixed straight line. Two circles touch this line at A & B respectively and tangent to each o...