mathematicalcircles
To Live and Breathe Mathematics
Friday, 20 August 2021
Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by
\[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}\]
Then,\(\qquad\)
(a) \(f\) is discontinuous.
\(\qquad\)
(b) \(f\) is continuous but not differentiable.
\(\qquad\) \(\qquad\) \(\qquad\)
(c) \(f\) is differentiable and its derivative is discontinuous.
\(\qquad\) \(\qquad\) \(\qquad\)\(\qquad\)\(\qquad\) \(\qquad\)
(d) \(f\) is differentiable and its derivative is continuous.
Wednesday, 18 August 2021
Let
\[\begin{gathered} p(x)=x^{3}-3 x^{2}+2 x, x \in \mathbb{R}, \\ f_{0}(x)= \begin{cases}\int_{0}^{x} p(t) d t, & x \geq 0, \\ -\int_{x}^{0} p(t) d t, & x<0,\end{cases} \\ f_{1}(x)=e^{f_{0}(x)}, \quad f_{2}(x)=e^{f_{1}(x)}, \quad \ldots \quad, f_{n}(x)=e^{f_{n-1}(x)} \end{gathered}\]
How many roots does the equation \(\frac{d f_{n}(x)}{d x}=0\) have in the interval \((-\infty, \infty)?\)
Subscribe to:
Comments (Atom)
Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \[f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, ...
-
16 programers are playing in a single elimination tournament. Each player has a diff erent skill level and when two play against each othe...
-
Post by mathematicalcircles .
-
Find all polynomial \(P(x)\) with degree \(\leq n\) and non negative coefficients such that \[P(x)P(\frac{1}{x})\leq P(1)^2\]for all positiv...